
Online Appendix

Monopolistic Competition and Optimum Product Diversity
Under Firm Heterogeneity

Swati Dhingra John Morrow

July 4, 2014

1 VES Specific Utility

The VES demand system implied by u(q) = aqρ + bqγ can generate all four combinations of
increasing and decreasing, private and social markups as we now briefly discuss. First, note that

ε
′(q) = ab(ρ− γ)2qρ−γ−1/

(
aqρ−γ +b

)2
,

µ
′(q) =−abργ(ρ− γ)2qρ−γ−1/

(
aρqρ−γ +bγ

)
.

For ρ = γ , ε ′(q) = µ ′(q) = 0 and we are in a CES economy. For ρ 6= γ , sign ε ′(q) = sign ab and
sign µ ′(q) = sign −ab ·ργ , exhibiting all four combinations for appropriate parameter values.
In addition, this demand system does not exhibit the log-linear relationship between welfare and
share of expenditure on home goods discussed in Arkolakis et al. (2012), as shown in Figure 1
for u(q) = q1/2 +q1/4.

Figure 1: Welfare and Share of Home Expenditure as Home Tariff Increases
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2 Converse of the Folk Theorem

We now consider general consumer preferences of the form given by Equation (1).

U(Me,cd,q)≡ ν(Me,cd)
∫ cd

0
u(q(c))g(c)dc (1)

where ν is positive and continuously differentiable, and u satisfies Definition 1.

Proposition. Under VES demand, a necessary condition for the market equilibrium to be so-
cially optimal is that u is CES.

Proof. Assume an equilibrium exists which is socially optimal with Me and cd fixed by that
equilibrium. Also let q∗(c) denote equilibrium quantities. If the equilibrium is efficient for
these fixed Me and cd , the quantities qp(c) a policymaker would choose must be optimal. For
convenience, define the functional H(q) as in the above proof and let U∗(q) ≡U(Me,cd,q) be
as in Equation (1). By Theorems 5.11 and 5.15 of Troutman, a necessary condition for qp to
be optimal is that either δH(qp;ξ ) = 0 ∀ξ ∈ C 1[0,cd] or ∃λ s.t. δU∗(qp) = λδH(qp;ξ ) = 0
∀ξ ∈ C 1[0,cd]. We will rule out the first and exploit an implication of the second.
Case 1: δH(qp;ξ ) = 0 ∀ξ ∈ C 1[0,cd]. ∀ξ we have that

δH(qp;ξ ) =
∫ cd

0
ξ (c)cg(c)dc = 0

which implies cg(c) is identically zero on [0,cd] which is clearly not optimal.
Case 2: δU∗(qp) = λδH(qp;ξ ) ∀ξ ∈ C 1[0,cd]. For any fixed Me and cd and ∀ξ we have that

ν(Me,cd)
∫ cd

0
ξ (c)u′(qp(c))g(c)dc = λMe

∫ cd

0
ξ (c)cg(c)dc

so for λ ′ ≡ λMe/ν(Me,cd) we have
∫ cd

0 [u′(qp(c))−λ ′c]g(c)ξ (c)dc = 0 and since g is C 1 and
strictly positive, we conclude

u′(qp(c)) = λ
′c (2)

Using similar reasoning, a monopolist with costs c picks qm(c) according to

max
qm(c)

[D(qm(c))− c]qm(c) =max
qm(c)

[u′(qm(c))/δ − c]qm(c) (Market)

so long as the resulting profit covers f . By assumption, the quantity FOC [u′(qm(c))/δ − c]+

u′′(qm(c))qm(c)/δ = 0 uniquely determines each monopolist’s optimal quantity which must be
q∗(c) in equilibrium. We conclude that q∗(c) is implicitly determined by the monopolist FOC
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as given in Equation (3).

u′(q∗(c))+u′′(q∗(c))q∗(c) = δc (3)

We now show q∗ = qp. Since H(qp) = H(q∗) and H(q) is linear in q, any convex combination
qα ≡ αq∗+(1−α)qp has H(qα) = H(qp) = H(q∗) and so is attainable. Since u is strictly
concave, a standard concavity argument shows that the optimality of qp and q∗ implies qp =

qα = q∗ ∀α ∈ [0,1]. Now comparing Equations (2) and (3) with the knowledge that q∗ = qp

and dividing the second by the first we see Equation (4) holds on [0,cd].

1+u′′(qp(c))qp(c)/u′(qp(c)) = δ/λ
′ (4)

Equation (4) implies for some constant k0 that for each c ∈ [0,cd] that

u′′(qp(c))qp(c) = k0u′(qp(c))

Equation (3) paired with u′′< 0 shows that q(c) is strictly decreasing so we have that q([0,cd]) =

[q(cd),q(0)]. Consequently, ∀x ∈ [q(cd),q(0)] we have that u′′(x)x = k0u′(x). Standard solution
techniques imply that the unique continuously differentiable solution for u on [0,cd] is u(x) =

α +βxγ for constants α,β ,γ , which is precisely the CES form up to an affine transformation.

3 Trade and Market Size

Proposition. Free trade between countries of sizes L1, ...,Ln has the same market outcome as a
unified market of size L = L1 + ...+Ln.

Proof. Consider a home country of size L opening to trade with a foreign country of size L∗.
Suppose the consumer’s budget multipliers are equal in each country so δ = δ ∗ and that the
terms of trade are unity. We will show that the implied allocation can be supported by a set of
prices and therefore constitutes a market equilibrium. The implied quantity allocation, produc-
tivity level and per capita entry are the same across home and foreign consumers, so opening to
trade is equivalent to an increase in market size from L to L+L∗.

Let e denote the home terms of trade, so

e≡M∗e

∫ c∗d

0
p∗xq∗xLdG/Me

∫ cd

0
pxqxL∗dG
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and by assumption e = e∗ = 1. Then the MR = MC condition implies a home firm chooses
p(c)[1− µ(q(c))] = c in the home market and e · px(c)[1− µ(qx(c))] = c in the foreign mar-
ket. A foreign firm chooses e∗ · p∗(c)[1− µ(q∗(c))] = c in the foreign market and p∗x(c)[1−
µ(q∗x(c))] = c in the home market. When δ = δ ∗ and e = e∗ = 1, quantity allocations and prices
are identical, i.e. q(c) = q∗x(c) = q∗(c) = qx(c) and p(c) = p∗x(c) = p∗(c) = px(c).

This implies cost cutoffs are also the same across countries. The cost cutoff condition
for home firms is π + eπx = (p(cd)− cd)q(cd)L+ e(px(cd)− cd)qx(cd)L∗ = f . Substituting
for optimal q∗ and q∗x in the analogous foreign cost cutoff condition implies cd = c∗d . From
the resource constraint, this fixes the relationship between entry across countries as L/Me =∫ cd

0 [cq(c)+ cqx(c)+ f ]dG+ fe = L∗/M∗e . Thus, δ = δ ∗ and e = e∗ = 1 completely determines
the behavior of firms. What remains is to check that δ = δ ∗ and e = e∗ = 1 is consistent with
the consumer’s problem and the balance of trade at these prices and quantities consistent with
firm behavior.

For the consumer’s problem, we require at home that 1 = Me
∫ cd

0 pqdG+M∗e
∫ c∗d

0 p∗xq∗xdG,
which from L/Me = L∗/M∗e is equivalent to

L/Me = L
∫ cd

0
pqdG+L∗

∫ c∗d

0
p∗xq∗xdG = L

∫ cd

0
pqdG+L/Me−L

∫ cd

0
pxqxdG.

Therefore to show the consumer’s problem is consistent, it is sufficient to show expenditure on
home goods is equal to expenditure on exported goods (

∫ cd
0 pqdG =

∫ cd
0 pxqxdG), which indeed

holds by the above equalities of prices and quantities. To show the balance of trade is consistent,
we use the consumer budget constraint which gives

e = M∗e

∫ c∗d

0
p∗xq∗xLdG/Me

∫ cd

0
pxqxL∗dG = M∗e L/MeL∗ = 1.

Similarly, the implied foreign terms of trade is e∗ = 1. Thus δ = δ ∗ and e = e∗ = 1 generate an
allocation consistent with monopolistic competition and price system consistent with consumer
maximization and free trade.

4 Large Market Results

Lemma. As market size becomes large:

1. Market revenue is increasing in market size and goes to infinity.

2. At the optimum, utility per capita is increasing in market size and goes to infinity.
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3. Market entry goes to infinity.

Proof. From above, the market allocation solves

max
Me,cd ,q(c)

LMe

∫ cd

0
u′ (q(c))q(c)dG subject to L≥Me

(∫ cd

0
Lcq(c)+ f dG+Fe

)
.

Let R(L)≡Me
∫ cd

0 u′ (q(c))q(c)dG be the revenue per capita under the market allocation. Fix L

and let {q(c),cd,Me} denote the market allocation with L resources. Consider an increased re-
source level L̃ > L with allocation

{
q̃(c), c̃d,M̃e

}
≡
{(

L/L̃
)
·q(c),cd,

(
L̃/L

)
·Me

}
which direct

inspection shows is feasible. This allocation generates revenue per capita of

M̃e

∫ c̃d

0
u′ (q̃(c))q(c)dG = Me

∫ cd

0
u′
((

L/L̃
)
·q(c)

)
q(c)dG≤ R

(
L̃
)
.

Since u is concave, it follows that R
(
L̃
)
> R(L). Since q̃(c) =

(
L/L̃

)
·q(c)−→ 0 for all c > 0

and limq−→0 u′ (q) = ∞, revenue per capita goes to infinity as L̃ −→ ∞. A similar argument
holds for the social optimum.

First note that q(c) is fixed by u′ (q(c)) [1−µ (q(c))] = δc, and δ −→ ∞ and µ (q(c)) is
bounded, it must be that u′ (q(c)) −→ ∞ for c > 0. This requires q(c) −→ 0 for c > 0. Since
revenue u′ (q(c))q(c) is equal to ε (q(c))u(q(c)) and ε is bounded, revenue also goes to zero
for each c > 0. Revenue is also decreasing in δ for every c, so we can bound revenue with a
function B(c). In particular, for any fixed market size L̃ and implied allocation

{
q̃(c), c̃d,M̃e

}
,

for L≥ L̃:

u′ (q(c))q(c)1[0,cd ](c)≤ u′ (q̃(c)) q̃(c)1[0,c̃d ](c)+u′ (q̃(c̃d)) q̃(c̃d)1[c̃d ,∞](c)≡ B(c) (5)

where we appeal to the fact that q(c) is decreasing in c for any market size. Since for any L,∫ cd
0 u′ (q(c))q(c)dG= δ/Me, it is clear that

∫
∞

0 B(c)dG=
∫ c̃d

0 u′ (q̃(c)) q̃(c)dG+u′ (q̃(cd)) q̃(cd)<

∞. Since u′ (q(c))q(c) converges pointwise to zero for c > 0, we conclude

lim
L−→∞

∫ cd

0
u′ (q(c))q(c)dG =

∫ cd

0
lim

L−→∞
u′ (q(c))q(c)dG = 0

by dominated convergence. Therefore limL−→∞ δ/Me = 0 which with δ −→∞ shows Me−→∞.
The optimal allocation case is similar.

Lemma. For all market sizes and all positive marginal cost (c > 0) firms:

1. Profits (π(c)) and social profits (ϖ(c)≡ (1− ε(c))/ε(c) · cq(c)L− f ) are bounded.
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2. Total quantities (Lq(c)) in the market and optimal allocation are bounded.

Proof. For any costs cL < cH , q(cH) is in the choice set of a firm with costs cL and therefore

π(cL)≥ (p(cH)− cL)q(cH)L− f = π(cH)+(cH− cL)q(cH)L. (6)

Furthermore, for every c̃ > 0, we argue π(c̃) is bounded. For c≡ c̃/2, π(c̃)≤ π(c) while π(c)

is bounded since lim
L→∞

∫ cd
0 π(c)dG = Fe and limsup

L→∞

π(c) = ∞ would imply limsup
L→∞

∫ cd
0 π(c)dG =

∞. It follows from Equation (6) that Lq(c) is bounded. Substituting ϖ for π leads to similar
arguments for the social optimum.

Lemma. Assume interior convergence. Then as market size grows large:

1. In the market, p(c) converges in (0,∞) for c > 0 and Lq(cd) converges in (0,∞).

2. In the optimum, u◦q(c)/λq(c) converges in (0,∞) for c > 0, Lq(cd) converges in (0,∞).

Proof. Since q(c) −→ 0 for all c > 0, lim
q→0

µ(q) ∈ (0,1) shows lim
L→∞

p(c) aligns with constant

markups and thus converges for all c> 0. In particular, p(cd) converges and L(p(cd)− cd)q(cd)=

f so it follows Lq(cd) converges. Similar arguments hold for the social optimum.

Lemma. Assume interior convergence and large market identification. Then for the market and
social optimum, Lq(c) converges for c > 0.

Proof. Fix any c > 0 and first note that for both the market and social planner, q(c)/q(cd) =

Lq(c)/Lq(cd) and both Lq(c) and Lq(cd) are bounded, so q(c)/q(cd) is bounded.
Now consider the market. q(c)/q(cd)≥ 1 has at least one limit point and if it has two limit

points, say a and b with a< b, there exist subsequences (q(c)/q(cd))an
→ a and (q(c)/q(cd))bn

→
b. There also exist distinct κ and κ̃ in (a,b) so that eventually

(q(c))an
< κq(cd)an < κ̃q(cd)bn < (q(c))bn

.

With u′′ < 0 this implies

(
u′(q(c))/u′(q(cd))

)
an
>
(
u′(κq(cd))/u′(q(cd))

)
an
>
(
u′(κ̃q(cd))/u′(q(cd))

)
bn

>
(
u′(q(c))/u′(q(cd))

)
bn
.
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By assumption, lim
q→0

u′(κq)/u′(q)> lim
q→0

u′(κ̃q)/u′(q) but since q(c)−→ 0,

lim
n→∞

(
u′ ◦q(c)/u′ ◦q(cd)

)
an
= lim

n→∞
([1−µ ◦q(c)]c/ [1−µ ◦q(cd)]cd)an

= c/cd

= lim
n→∞

(
u′ ◦q(c)/u′ ◦q(cd)

)
bn

where we have used the fact that lim
q→0

µ (q) ∈ (0,1), however by assumption this contradicts

a < b.
For the social optimum, this argument holds (substituting ε 6= 0 for u′′ < 0) so long as

κ 6= κ̃ implies lim
q→0

(u(κq)/κq)/(u(q)/q) 6= lim
q→0

(u(κ̃q)/κq)/(u(q)/q) . (7)

Since lim
q→0

u′(q) = ∞ and lim
q→0

ε ∈ (0,∞) it follows that lim
q→0

u(q)/q = ∞. By L’Hospital’s rule,

lim
q→0

(u(κq)/κq)/(u(q)/q) = lim
q→0

u′(κq)/u′(q) for all κ so the condition (7) in holds because

κ 6= κ̃ implies lim
q→0

u′(κq)/u′(q) 6= lim
q→0

u′(κ̃q)/u′(q).

Lemma. At extreme quantities, social and private markups align as follows:

1. If lim
q→0

1− ε(q)< 1 then lim
q→0

1− ε(q) = lim
q→0

µ(q).

2. If lim
q→∞

1− ε(q)< 1 then lim
q→∞

1− ε(q) = lim
q→∞

µ(q).

Proof. By assumption, lim
q→0

ε(q)> 0. Expanding this limit via L’Hospital’s rule shows

lim
q→0

ε(q) = lim
q→0

q/
(
u(q)/u′(q)

)
= lim

q→0
1/ lim

q→0

(
1−u(q)u′′(q)/(u′(q))2)

= 1/ lim
q→0

(1+µ (q)/ε (q)) = lim
q→0

ε (q)/ lim
q→0

(ε (q)+µ (q))

which gives the first part of the result. Identical steps for q−→ ∞ give the second part.
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5 Robustness of Efficiency under CES Demand

5.1 Multiple Sectors
The optimal and market allocations can be summarized as solutions to the following maximiza-
tion problem with α = 0 and α = 1 respectively:

max
q0,Me,cd ,q(c)

U
(

q0,Me

∫ cd

0
vα (q(c))dG

)
subject to 1≥ q0 +Me

(∫ cd

0
(cq(c)+ f/L)dG+ fe/L

)
.

(8)

where vα(q) ≡ αu′ (q)q+(1−α)u(q). Conditional on a resource allocation of (1−q0) to-
wards differentiated goods, the FOCs for the optimal and market allocations within the differ-
entiated goods sector are similar to the one-sector case. Therefore, the distortion results for the
one-sector case hold for the multi-sector case, given a fixed resource allocation (1−q0).

5.2 Non-constant Marginal Costs
To account for non-constant marginal costs, let the variable cost of production be ω(q) · cq.
The benchmark model implicitly assumes ω(q) = 1. Assuming strict concavity of the firm
and the planner problems, the optimal and market allocations can be summarized as solutions
to the following maximization program for α = 0 and α = 1. Using the constructed function
vα(q)≡ αu′ (q)q+(1−α)u(q),

max
Me,cd ,q(c)

LMe

∫ cd

0
vα (q(c))dG subject to L≥Me

(∫ cd

0
Lω(q(c))cq(c)+ f dG+ fe

)
. (9)

The FOCs for q(c) and cd are:

u′+αu′′q =βc
[
ω +ω

′q
]

ud +α
(
u′dqd−ud

)
=β [ωdcdqd + f/L]

where β is the Lagrange multiplier. The FOC for Me is unchanged and the labor constraint is as
specified above. From the envelope theorem, d lnβ/d lnα = 1−

∫
u/
∫

v. Totally differentiating
the cd FOC and substituting for d lnβ/d lnα , the change in the cost cutoff is

d lncd/d lnα =
ωdcdqd + f/L

ωdcdqd

α [(1− ε̄)− (1− εd)]

[1−α (1− ε̄)] [1−α (1− εd)]
.

Therefore, sign d lncd/d lnα = sign (1− ε)′ and introducing non-constant marginal costs does
not change the comparative static for firm selection. The market under-selects when (1− ε)′> 0
and vice-versa.
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The quantity allocation can be determined through the following relationship:

(
1−µ(qmkt(c))

)[( u′

ω +ω ′q

)
mkt

/

(
u′

ω +ω ′q

)
opt

]
=δ/λ

Under the earlier assumption of constant marginal costs, ω +ω ′q = 1 and the relevant relation-
ship is

(
1−µ(qmkt(c))

)[
u′(qmkt)/u′(qopt)

]
= δ/λ . The key difference under non-constant

marginal costs is that we must now examine h(q) ≡ u′(q)/(ω(q)+ω ′(q)q). Under the con-
cavity assumption (2ω ′+ω ′′q > 0), h′(q)< 0 and d lnq/d lnc < 0. Therefore, the logic of the
quantity distortion proof continues to hold.

5.3 Advertising Costs
We assume advertising costs are such that the concavity of the problem is maintained in con-
junction with VES demand. It may be shown that revenue maximization holds under advertising
costs. Defining ε̄ ≡

∫
(v/u) · un∫

un =
∫

vn/
∫

un, we can proceed as earlier to determine the dis-
tortions in market outcomes.
Proof of Quantity Distortion. The change in quantity with respect to α is signd lnq/d lnα =
(−)sign [(µ− µ̄)− (1− ε̄− µ̄)]. For µ ′,(1− ε)′ > 0, the sign is positive for all c < c̄ (where
c̄ is such that µ(c̄) = µ̄ for weighting un/

∫
undG). For c > c̄, µ < µ̄ but the second term

1− ε̄ − µ̄ < 0. As µ is increasing, we will check whether the sign can be negative for c→ ∞.
Using sup(1−µ) = supε , the term in square brackets at c→ ∞ is ε̄− supε < 0. Therefore, the
market over-produces quantity for low c and under-produces for high c. For µ ′,(1− ε)′ < 0,
the argument is reversed because at c→ ∞, the term is ε̄ − infε > 0. For the misaligned case
of µ ′ > 0,(1− ε)′ < 0, the sign is negative for c > c̄. For c < c̄, the first term and the second
term are both positive, so we check the sign at c→ 0. At zero, using inf

c≤cmkt
d

1−µ
(
qmkt(c)

)
≥ σ

and σ ≡ supc≤cmkt
d

ε
(
qmkt(c)

)
, the term in square brackets is (µ− µ̄)− (1− ε̄− µ̄) ≤ ε̄− σ̄ =

ε̄− supε ≤ 0. This implies the sign is negative for all c and the market over-produces quantity.
When µ ′ < 0,(1−ε)′ > 0, the sign is positive for c > c̄. For c < c̄, the first term and the second
term are both negative, so we check the sign at c→ 0. At zero, using sup

c≤cmkt
d

1−µ
(
qmkt(c)

)
≤ σ

and infc≤copt
d

ε (qopt(c)) ≡ σ , the term in square brackets is (µ− µ̄)− (1− ε̄− µ̄) ≥ ε̄ −σ =

ε̄− infε ≥ 0. This implies the sign is positive for all c and the market under-produces quantity.
We conclude that the quantity misallocation is similar to the baseline model.
Proof of Productivity. As earlier, signd lncd/d lnα = sign(1− ε)′. Since dcd/dα ≷ 0 when
(1− ε)′ ≷ 0, the market under-selects for (1− ε)′ > 0 and over-selects in the other case. The
bias in firm selection is similar to that for the baseline model.
Proof of Advertising. The change in advertising is

d lnn
d lnα

=
1−n
βn

1
1− v′αq/vα

α ((1− ε̄)− (1− ε))

(1−α(1− ε̄))(1−α(1− ε))
.
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Therefore, signd lnn/d lnα = sign((1− ε̄)− (1− ε)). When (1− ε)′ > 0, the market under-
advertises for low c and over-advertises for high c. For (1− ε)′ < 0, the market over-advertises
for low c and under-advertises for high c.
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